
C of Peril

Paul L Daniels

29th November 2004

Contents

1 Preface 3
1.1 Introduction . 3
1.2 Intended Audience . 3
1.3 Thanks and Accreditations . 3

I C of Peril 5

2 Character / String Functions 7
2.1 strcpy . 7
2.2 strncpy . 9
2.3 strtok . 10
2.4 strcat / strncat . 14
2.5 sprintf . 16

3 Memory related functions 17
3.1 realloc . 17
3.2 free . 18
3.3 malloc . 20
3.4 sizeof . 20

4 Input/Output related functions 21
4.1 gets . 21
4.2 fgets . 22
4.3 scanf . 22
4.4 sprintf, fprintf, syslog and other output related functions 23

5 Macro Mishaps 25
5.1 Semicolon at the end of macros 25
5.2 Macro name and left bracket separation 25
5.3 Operator precedence for parameters 25
5.4 Operator precedence for expressions 26
5.5 Multiple evaluation of parameters 26
5.6 Single statements versus multiple statements. 27

1

CONTENTS 2

6 Optimising 28
6.1 A Matter of Style . 28

7 Syntax 29

8 Links 30

A Book Development Notes 32
A.1 CHANGELOG / ERRATA . 32
A.2 AUTHORS . 32

Chapter 1

Preface

1.1 Introduction

C is frequently touted as being one of the most perilous languages next to assembly
code (or binary machine code for that matter). A lot of troubles arise from the
misconstrued public perception of many standard functions. Additionally, blatent
abuse or laziness consequently contributes to many of C’s perceived failures.

The best explanation for the existance of this book is that it aims to teach better
C programming and demonstrate how.

1.2 Intended Audience

This book is intended to be read by C programmers of all levels. I strongly believe
that getting new comers to C informed about the potential pitfalls that befront them
will stand them in good stead for the years to come, hopefully eliminating many of
the frustrating hours (days) involved in debugging problematic programs as often
involved with the problems covered in this book.

For the advanced C programmer, I still recommend looking into this book, if
only to reaffirm your understanding of what certain C functions do (and don’t) do.

If it’s any consulation, I was prompted into writing this book whence discover-
ing after over a decade of programming, I had failed to realise that strncpy() could
in fact still induce a buffer overflow situation. If nothing else I was lulled into the
perception that it was safe by the masses of people touting “Replace strcpy with
strncpy”.

1.3 Thanks and Accreditations

At the risk of being stereotypical, I would like to thank my beautiful wife, Elita,
for her endurance in a time where there simply wasn’t enough time for everything
that needed it.

3

CHAPTER 1. PREFACE 4

The people of the #c IRC chat channel on the FreeNode network (formerly
OpenProjects), for their endless submissions of really bad C code.

Part I

C of Peril

5

6

If you ask a veteran C programmer for a list of functions which are known
problem areas, chances are they’ll rattle off names such as strtok, strcpy and gets.
However, knowing to avoid those functions is only part of the way towards resolv-
ing the issue, instead, it would be nice to know why those functions (and others)
are problematic.

Most programming problems related to C functions tend to be due to gross
public misconceptions about how the functions work, in so far as having witnessed
several tutoring sessions and books which incorrectly depict matters.

Chapter 2

Character / String Functions

One thing you will note about a lot of C’s “bad” functions, is that they’re typically
associated with strings. C does not actually have a string type, instead it defines a
string as a sequence of characters, terminated by a NUL (\0) character. The NUL
character is of utmost importance, without its presence, string processing functions
can continue on far beyond the actual allocated space (for the variable in question)
and produce some rather interesting results.

2.1 strcpy

In short, you should never use this function. It ranks possibly as the Number 1 of
all causes of buffer overflows in programs written in C. The problem with strcpy is
that you [the programmer] never quite usually know how big the source is going to
be, and worse still, you have no way of defining how big the destination is. A very
simple example of this sort of unknown sizing is as follows:

Listing 2.1: Example 1 - failure of strcpy()
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char name[10];

strcpy(name, "This is a long name");

printf("Name = %s\n",name);

return 0;
}

On compiling and running this program, possible output could be as follows:
bash-2.05\$./example1

Name = This is a long name

7

CHAPTER 2. CHARACTER / STRING FUNCTIONS 8

Segmentation fault

bash-2.05\$

Whilst the output from the program looks “normal” (apart from the Segfault of
course), this code exhibits undefined behaviour due to using a pointer outside of
a vector of allocation. It’s important to understand that undefined means exactly
that, undefined. There’s no gaurantee of a segfault or other predictable behaviour,
hence why debugging such bugs can be so annoying.

The effect here is that although strcpy() will result in the full valid string being
written to memory, if the destination buffer is too small, strcpy() will commence
writing beyond the buffer, possibly overwriting other critical memory locations.

It should be strongly emphasised that this program won’t always Segfault, it’s
an intermittent failure based on many factors. The point though is that the pro-
gram is overwriting memory it should not be and thus will potentially cause issues.
Many times a program will compile and run without any ill-effect but intermit-
tently it will produce invalid results or segfaulting. This intermittent behaviour
makes debugging buffer overflows rather difficult.

If you must use strcpy(), then there are a few precautions you can take to at
least minimise the potential of a buffer overflow, namely by strictly enforcing the
length of the source string (Note - there’s nothing you can do about it if the input
string is immutable)

Listing 2.2: Example 2 - Getting around strcpy()’s limitations
/*
* Safe usage of strcpy() - though still not
* recommended
*
*/

#include <stdio.h>
#include <stdlib.h>

#define NAME_STR_LEN 10

int main(int argc, char **argv)
{

char name[NAME_STR_LEN +1];
char inputname[]="This is a long name";

// If we really must use strcpy, then at least
// force a test and termination of the input string

if (strlen(inputname) > NAME_STR_LEN)
{

inputname[NAME_STR_LEN] = ’\0’;
}

strcpy(name, inputname);

printf("Name = %s\n",name);

CHAPTER 2. CHARACTER / STRING FUNCTIONS 9

return 0;
:}

2.2 strncpy

The public’s favorite replacement for strcpy() has been announced as strncpy(), a
function which we supposedly should have used from the start, the function which
prevents buffer overflows, because it entails a size limit as one of its parameters...
well, not quite.

The function won’t overwrite beyond the bounds of what you set (via the size
parameter), but strncpy does still hold a nasty little secret. As quoted directly from
the Linux supplied man pages [man strncpy]:

“ Thus, if there is no null byte among the first n bytes of src, the
result wil not be null-terminated.”

Yes, even the missing ’l’ is right.
Even though strncpy() won’t directly cause a buffer overflow, the usage of the

string it writes to the destination buffer can.

Listing 2.3: Example of strncpy() failure
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define FOO_STR_LEN 10

int main(int argc, char **argv)
{

char foo[FOO_STR_LEN +1];

// Copy our oversized string to foo, but this wont
// cause a buffer overflow here

strncpy(foo,"This is a long string",FOO_STR_LEN);

// But printing out the resultant string will cause
// undefined results because the string ’foo’ does not
// have a terminating \0 !!!

printf("Foo = %s\n",foo);

return 0;
}

Running this program will result in a similar output to what follows:
bash-2.05\$./example3

Foo = This is a ÿ¿wùÿ¿ëc@‘

bash-2.05\$

CHAPTER 2. CHARACTER / STRING FUNCTIONS 10

Hence, we can see that although the strncpy function call did correctly limit the
copying to the destination, but (through it’s design) it failed to terminate the string
with a \0. Once again, I exert, this is the way strncpy() is supposed to work. It
is only due to the widespread usage of strncpy() as a supposedly “buffer safe”
strcpy() replacement that strncpy() is also about to walk itself into the halls of
buffer overflow fame.

Fortunately, there is an additional str*cpy() function which does do what people
expect, strlcpy(), however, strlcpy() is not yet widely implemented.

As an interim replacement, the following source code is suggested:

Listing 2.4: strncpy replacement source code
char *CP_strncpy (char *dst, const char *src, size_t len)
{

// If we have no buffer space, then it’s futile attempting
// to copy anything, just return NULL
if (len==0) return NULL;

// Providing our destination pointer isn’t NULL, we can
// commence copying data across

if (dst)
{

char *dp = dst;

// If our source string exists, start moving it to the
// destination string character at a time.
if (src)
{

char *sp = (char *)src;
while ((--len)&&(*sp)) { *dp=*sp; dp++; sp++; }

}

*dp=’\0’;
}

return dst;
}

2.3 strtok

Few functions come close to strtok() when it comes to producing the most obscure,
yet, seemingly perfectly legal results (that is to say, it does not cause segfaults
immediately). The problem with strtok is that it has a single shared working buffer
(where it stores the string which it is processing). Hence, you cannot perform two
independent strtok() processes concurrently or nested. The program listed here
provides a good example of what happens when you nest two strtok() processes.

Listing 2.5: strtok failure in nested requests
#include <stdio.h>
#include <stdlib.h>

CHAPTER 2. CHARACTER / STRING FUNCTIONS 11

#include <string.h>

int main(int argc, char **argv)
{

char foo[]="This is my string which I want parsed";
char bar[]="-I -also -want -this -string -parsed";
char *foo_token, *bar_token;

printf("Foo String = ’%s’\nBar String = ’%s’\n", foo, bar);
foo_token = strtok(foo," ");

printf("Foo token 1 = ’%s’\n",foo_token);

foo_token = strtok(NULL," ");

printf("Foo token 2 = ’%s’\n",foo_token);

// Now lets start decoding our 2nd string, bar

bar_token = strtok(bar," ");

printf("Bar token 1 = ’%s’\n",bar_token);

foo_token = strtok(NULL," ");

printf("Foo token 3 = ’%s’\n",foo_token);

return 0;

}

On running the compiled program, our output looks like:
Foo String = ’This is my string which I want parsed’
Bar String = ’-I -also -want -this -string -parsed’
Foo token 1 = ’This’
Foo token 2 = ’is’
Bar token 1 = ’-I’
Foo token 3 = ’-also’

As we can see, the second strtok call with a string initialisation (with the string
bar) causes the work space for the foo strtok sequence to be over-written. In the
example, it’s obvious to see the conflict, however, a more problematic situation
arises if you’re strtok’ing and calling another function which might possibly call
strtok() as well. This causes much confusion, not to mention many hours wasted
wondering if the debugger is broken.

A replacement for strtok() is within the reach of most programmers, in fact, I
suggest that every programmer does endeavor to write their own. Below is the list-
ing of a pair of source files which implement a replacement strtok() function. Take
note that there’s a third parameter with the replacement strtok() implementation,
this parameter ensures that concurrent or nested strtok type calls will not interferre
with their peer’s workspaces. The source code presented here is not guaranteed
to be “optimal”, certainly there are many possibilities for optimising this function,
however, our focus is to provide a working function first.

CHAPTER 2. CHARACTER / STRING FUNCTIONS 12

Listing 2.6: Safe replacement for strtok
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/**
** Define the structure we need for strtok.
** We need to carry this information with us so that
** this strtok replacement will be thread safe, as
**/

struct CP_strtok
{

char *start;
char delimeter;

};

char *CP_strtok(struct CP_strtok *st, char *line, char *
delimeters)

{
char *stop;
char *dc;
char *result = NULL; /** The pointer we will return **/

/** If the line parameter is non-null, then we set the start of
** our token to be the start of the line
**/

if (line)
{

st->start = line;
}

/** strtok behaviour clone:
** Strip off any leading delimeters
**/

dc = delimeters;
while ((st->start)&&(*dc != ’\0’))
{

if (*dc == *(st->start))
{

st->start++;
dc = delimeters;

}
else dc++;

}

/** After the delimeters (if any) have been passed,
** we are then left at the position in the string
** where the token will start.
**
** Set the return value to point to this location.
**/

result = st->start;

if ((st->start)&&(st->start != ’\0’))
{

stop = strpbrk(st->start, delimeters); /** locate our next
delimeter **/

CHAPTER 2. CHARACTER / STRING FUNCTIONS 13

/** If we found a delimeter, then that is good.
** We must now break the string here
** and don’t forget to store the character
** which we stopped on. Very useful bit
** of information for programs which process expressions.
**/

if (stop)
{

/** Store our delimeter. **/

st->delimeter = *stop;

/** Terminate our token at the location of the first
delimeter **/

*stop = ’\0’;

/** Because we’re emulating strtok() behaviour here, we
have to

** absorb all the concurrent delimeters, that is, unless
we

** reach the end of the string, we cannot return a
string with

** no chars. **/

stop++;
dc = delimeters;
while (*dc != ’\0’)
{

if (*dc == *stop)
{

stop++;
dc = delimeters;

}
else dc++;

} // While

if (*stop == ’\0’) st->start = NULL;
else st->start = stop;

} else {
st->start = NULL;
st->delimeter = ’\0’;

}

} else {
st->start = NULL;
result = NULL;

}

return result;
}

CHAPTER 2. CHARACTER / STRING FUNCTIONS 14

2.4 strcat / strncat

Both strcat() and strncat() are rather poor functions for use in an environment
where keeping a restraint on buffer overflows is needed (which is basically every-
where). It’s abundantly apparent that strcat(), with no size control parameter will
obviously be an ideal candidate for buffer overflow, however, strncat(), whilst it
does provide the facility of dictating how many chars to copy, offers it in such a
way that’s not entirely useful to us, yet, is quite often used in a way which is totally
wrong.

With strncat(), the fault often lies (again) within the perception that the size
parameter depicts the maximum size of the destination buffer. In fact, it depicts
the maximum number of characters we want to copy from the source.

A good example of strncat() abuse is depicted in the following source code.
Note how the size parameter of strncat() is incorrectly specified as the destination
buffer size.

Listing 2.7: Example of poor strncat usage
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define FOO_STR_LEN 20

int main(int argc, char **argv)
{

char foo[FOO_STR_LEN+1]="";
char startstr[]="Start of the string";
char endstr[]="... end of string";

strncat(foo,startstr, FOO_STR_LEN);
printf("Foo = ’%s’\n",foo);

strncat(foo,endstr, FOO_STR_LEN);
printf("Foo = ’%s’\n",foo);

return 0;

}

The output of this program executing is typically like as follows:
bash-2.05$./example_strncat
Foo = ’Start of the string’
Foo = ’Start of the string... end of string’
Segmentation fault
bash-2.05$

A suitable replacement for strcat() and strncat() which provides the desired
behaviour is included below. Once again, I emphasise, that strncat() is not so
much a bad function, but rather it’s often misused, as is the case with a lot of
string functions. However, usage of zstrncat(), in place of strncat(), additionally
reduces the complexity of your coding by eliminating the need to keep track of

CHAPTER 2. CHARACTER / STRING FUNCTIONS 15

the space remaining in your buffer. This function could additionally be extended
to take another parameter to return the end of string marker (of the destination),
this can facilitate in the saving of CPU cycles when dealing with particularly long
destination buffers and a lot of string catenation (Normally one would have to
determine the end of string location by traversing the string from the start and
looking for the \0 marker).

Listing 2.8: zstrncat - safe strcat and strncat replacement
#include <stddef.h>
#include <stdio.h>

char *zstrncat(char *dst, char *src, size_t len)
{

char *dp = dst;
char *sp = src;
int cc;

// Compensate for our need for a \0 at the end of the string

len--;

// Locate the end of the current string.
cc = 0;
while ((*dp)&&(cc < len)) { dp++; cc++; }

// While we have more source, and there’s more char space left
in the buffer

while ((*sp)&&(cc < len))
{

*dp = *sp;
dp++;
sp++;
cc++;

}

// Terminate dst, as a guarantee of string ending.
// Only if the input length was 0 should we not do this
// as a length of zero means there was no buffer space

initially

if (len >= 0)
{

*dp = ’\0’;
}

return dst;
}

CHAPTER 2. CHARACTER / STRING FUNCTIONS 16

2.5 sprintf

As with strcpy() and strcat(), sprintf() fails to place any buffer limits checking into
its routines. Fortunately, the ’n’ replacement, snprintf() is quite safe to use and
exhibits no unusual behaviour. In fact, snprintf() could be used as a replacement
for strcpy()/strncpy().

Chapter 3

Memory related functions

Memory allocation functions, while fairly simple, do still come up as problematic,
especially when dealing with reallocation. Other situations are rare, but should still
be noted (for malloc). Additionally, there are issues regarding the interpretation of
the ANSI specification, regarding what to do with null pointers.

3.1 realloc

Whilst realloc() does not exhibit unusual or complex behaviour (although what
happens behind the scenes is quite complex), people can often fail to account for
what happens when things do go wrong with the allocation request, ie, when realloc
returns a null pointer. The following code demonstrates a typical sort of situation,
where realloc() is used to provide an ever larger block of memory to cater for the
catenation of a string to the end of an existing string.

Although it is quite obvious that this program will (eventually) consume all the
available memory, what is not apparent is that you will be unable to free it once
memory has run out.

Listing 3.1: realloc - example of typical, bad usage
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char arbstring[]="This is an arbitrary string\n";
char *foo;
int blocksize=0;
int slen;

blocksize = slen = strlen(arbstring) +1;

while (1)
{

foo = realloc(foo, blocksize);
blocksize += slen;
strcat(foo,arbstring);

17

CHAPTER 3. MEMORY RELATED FUNCTIONS 18

}

return 0;
}

The reason why you will not be able to free the allocated block of memory
(which is probably quite large) is due to the result from realloc() being immediately
applied to the variable which we are using to keep track of the start of the memory
block. When realloc() fails to allocate a memory block, it will return a null pointer,
thus foo immediately points to null, and we no longer know where the (previous)
block of memory which foo pointed to is, it’s now a non recoverable block.

An example of how such a process should be coded is provided:

Listing 3.2: realloc - example of good, safe usage
int main(int argc, char **argv)
{

char arbstring[]="This is an arbitrary string\n";
char *foo, *bar;
int blocksize=0;
int slen;

blocksize = slen = strlen(arbstring) +1;

while (1)
{

bar = realloc(foo, blocksize);
if (bar)
{

foo = bar;
blocksize += slen;
zstrncat(foo, arbstring, blocksize);

}
else {

... perform graceful exit
}

}

return 0;
}

3.2 free

There is the occasional debate surrounding the free function. The problem lies with
the situation of “Should I test a pointer for null before free’ing it?”

Answers can range from “No, ANSI says it’s safe to free(NULL).”, to “Yes,
despite ANSI, it’s good practice to test the pointer before trying to free it”, and of
course, there’s the inbetween.

The issues arise from a few points.

CHAPTER 3. MEMORY RELATED FUNCTIONS 19

• Free’ing a null pointer causes a segmentation fault on some non-ANSI or
just plain broken implementations

• Attempting to free a null pointer can be an indication that there are issues
elsewhere in the code

• Redundant code makes for slower and larger programs

Certainly it is agreeable that if you are attempting to free a null pointer, then you’re
most certainly in a situation where somewhere prior in your code there is something
amiss. However, that is not specifically a reason to not program in a defensive
manner. As humans we most certainly do create mistakes, by testing our pointer
before hand gives us another chance to detect a mistake before throwing the pin
rather than the grenade.

As a simple example, see the following code:

Listing 3.3: Example of segmentation faulting using free
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char *foo = NULL;

free(foo);

return 0;
}

On running this program, a segmentation fault may occur (on some implemen-
tations such as early linux glibc’s).

Listing 3.4: Example of a graceful exit from freeing a null pointer
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char *foo = NULL;

if (!foo)
{

fprintf(stderr,"Error:%d: Attempting to free variable ’foo’
which is null.\n",__LINE__);

exit(1);
}
else free(foo);

return 0;
}

At least now when we run our program, the output resembles something a little
more useful for debugging.

CHAPTER 3. MEMORY RELATED FUNCTIONS 20

bash-2.05$./example_freegraceful
Error:10: Attempting to free variable ’foo’ which is null.
bash-2.05$

3.3 malloc

The discussion for malloc is a simple one, don’t assume that malloc will always
return a non-null pointer. Although it’s rare, it can still happen. Always test your
returned value from malloc for null value before proceeding to use it.

3.4 sizeof

The function sizeof() is often misused, with good intentions, to return the size of a
string or some other arbitrarily allocated block of memory. Due to sizeof() being
a compile-time resolved function, it cannot return useful results for dynamically
changing quantities.

As a rule, attempt to only use sizeof() on types, and not variables. For strings,
use strlen(). Although there are many exceptions to this, it will at the very least
prevent you from (generally) attempting to sizeof() a pointer.

Chapter 4

Input/Output related functions

4.1 gets

Many of the bad functions in C can be worked around by performing pre or post
call checks on the variables. Unfortunately, gets() is impossible to protect yourself
against. Consider the situation where you allocate a 1K buffer to read input from
stdin, surely that’s big enough for most inputs, that is until someone sends you 1K
and 1 byte, your program has just had a buffer overflow. The fundamental problem
with gets() is that there’s no way to protect yourself from buffer overflows because
there’s no way of restricting how much input to accept while gets() is called. The
word never is often abused but never use gets(). Use fgets(buffer, buffer_size, stdin)
instead, please.

Listing 4.1: Example of why gets is dangerous
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char buffer[20]; /** setup a buffer of 20 chars **/

do {
printf("Say something : ");

/** If the input is greater than 19 chars, this
** gets call will overflow.
**
** Your program will not always segfault
** immediately but be assured, your program
** has now mangled something **/

gets(buffer);
printf("You said ’%s’\n",buffer);

} while (strlen(buffer) > 0);

return 0;
}

21

CHAPTER 4. INPUT/OUTPUT RELATED FUNCTIONS 22

$./gets-example
Say something : Hello
You said ’Hello’
Say something : This is a really long string which will mess

things up
You said ’This is a really long string which will mess things up’
Say something :
You said ’’
Segmentation fault

Notice that in this example, gets-example didn’t segfault until the program
went to exit. It should be noted that the behaviour of the program after a gets buffer
overflow (or any overflow for that matter) is undefined, some will segfault/crash
almost immediately, others will show no ill signs.

When you do replace all your gets() calls with fgets(), you’ll still have one
further thing to adjust. The gets() does not store the trailing \n character but fgets()
does. A simple way of doing this is;
len = strlen(buffer);
if ((len >0)&&(buffer[len-1] == ’\n’))

buffer[len-1] = ’\0’;

The reason we have to check for the presence of the trailing \n is because fgets()
may not always have read the entire input up to the terminating \n character. See
section 4.2 for more details on possible fgets() issues.

4.2 fgets

It should be noted at first that fgets() is actually quite a good function. The reason
for putting fgets() into this book is to ensure that the one potential mistake that can
arise from using it is covered.

Be aware that there’s no gaurantee that a call to fgets() will always return a
complete line to the terminating
n character. If your buffer is just one char too small, the next call to fgets() will
return a string containing only the single
n character. This type of behaviour may be misleading in situations where your
program is seeking for a delimiting ’blank line’, as such is the case when parsing
MIME or HTTP data.

4.3 scanf

For user interaction and input, scanf() has often been used, however, it’s problems
lie within the fragile nature of the format of data, as specified by the format string.
Many problems can occur from failing to correctly input all data (causing a spill
over into the next scanf() call).

Another issue with scanf() is the lack of buffer limits when performing a string
read/translation makes it as fatal as gets().

CHAPTER 4. INPUT/OUTPUT RELATED FUNCTIONS 23

Listing 4.2: Example of why scanf can be dangerous
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char **argv)
{

char buf[10];

printf("Enter your name: ");
scanf("%s",buf);
printf("\nYour name is %s", buf);

return 0;

}

worker@workbox:/extra/shared/documents/c-of-peril/examples
$./scanf-example
Enter your name: Paul

Your name is Paul

$./scanf-example
Enter your name: sdflkhjlh3tlh23l;

th20f3h909ch029hd092h30hd09h309h309hd3hdf

Segmentation fault

worker@workbox:/extra/shared/documents/c-of-peril/examples

Buffer overflows on the output string parameters can be avoided by explicitly
defining size limits in the scanf() format. This is shown in the following code. Note
the buffer size prefix in the %s format specifier.

Listing 4.3: Example of how to buffer size limit in scanf
char buf[10];

printf("Enter your name: ");
scanf("%9s",buf);
printf("\nYour name is %s", buf);

Rather, use fgets(buffer, buffer_size, input_file), this ensures that everything,
including the line termination is read into the buffer buffer (assuming buffer is
large enough to hold the potential input)

4.4 sprintf, fprintf, syslog and other output related func-
tions

As C imposes very loose restrictions on what you can make it do, there are possible
situations which can cause data corruption or even segmentation faulting through

CHAPTER 4. INPUT/OUTPUT RELATED FUNCTIONS 24

the non conformance of types specifed in the output format, versus those actually
supplied. Sometimes, it can even mean your debugging reporting output can be the
cause of a segfault.

The following source code, when compiled and run will cause a segfault:

Listing 4.4: Example of generating a segfault through the use of wrongly matched
format, value pairs
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>

int main(int argc, char **argv)
{

int foo=3254325;

syslog(1,"This is an integer %s",foo);

return 0;
}

In this instance, the segmentation fault is a result of the program interpreting
the integer value foo as an address of a character pointer (the value of foo was inter-
preted as a pointer value). Incidently, had the typing of the variables been reversed,
such that foo was a string and the syslog was expecting an integer, then so long
as the string was sufficiently long (sizeof(int) bytes, inclusive of the terminating \0
byte) we would get results that did not match what were expected.

Mostly this example serves to remind that one should not take lightly the warn-
ings which the C compiler will produce when attempting to compile such code. ie,
the GNU gcc compiler compiled with the following error:
example_syslog.c: In function ‘main’:

example_syslog.c:9: warning: format argument is not a pointer (arg
3)

In a large compile, such warnings can be overlooked and be potentially fatal. Just
because a C program compiles does not imply that it is going to function in a valid
manner.

Chapter 5

Macro Mishaps

5.1 Semicolon at the end of macros

Semicolons should not generally be placed at the end of macros. The preprocessor
replaces the text as-is, thus an additional semicolon usually leads to syntactical
errors. For example:
#define SIZE_LIMIT 128;

if (strlen(foo) > SIZE_LIMIT)

which converts to:
if (strlen(foo)> 128;)

Compilation of this code will most likely result in an error:
parse error before ‘;’

5.2 Macro name and left bracket separation

There cannot be any white space (spaces or tabs) between the macro name and the
first left bracket (for parameters). This is due to the preprocessor interpreting the
occurrence of white space as the end of a macro name (with no parameters). For
example:
#define min(x,y) (x<y)?x:y

causing all occurrences of ’min’ to be replaced with:
(x,y) (x<y)?x:y

Most occurances of this type of error will induce a compilation error/warning.

5.3 Operator precedence for parameters

Find something for here...

25

CHAPTER 5. MACRO MISHAPS 26

5.4 Operator precedence for expressions

Because macros are text substitutions prior to a compiling process, no order of
precedence checking is performed, arguments are just substituted, consequently the
resulting code substitution is not guaranteed to have the same order of precedence
as intended (by the programmer). The following example demonstrates this.

Listing 5.1: Example exhibiting incorrect order of precedence due to macro expan-
sion effect
#include <stdio.h>
#include <stdlib.h>

#define sum(x,y) x + y

int main(void)
{

int a = 10;
int b = 3;
int c;

c = 2 *sum(a,b);

printf("2 * (%d + %d) = %d\n", a, b, c);

return 0;
}

5.5 Multiple evaluation of parameters

A good example is if we were attempting to print out a list of the cube of the
integers from 1 to 10.

Listing 5.2: Example of code incorrectly using a macro causing undesired side
effects
#include <stdio.h>
#include <stdlib.h>

#define cube(x) (x)*(x)*(x)

int main(void)
{

int i = 1;

while (i <= 10)
{

printf("Cube of %d = %d\n", i, cube(i++));
}

return 0;
}

CHAPTER 5. MACRO MISHAPS 27

On executing this small program, our output is completely different from what
we initially would anticipate.

Listing 5.3: Output of macro example
Cube of 4 = 1
Cube of 7 = 64
Cube of 10 = 343
Cube of 13 = 1000

There is no real ’cure’ for this condition other than to avoid performing oper-
ations within the parameters of the macro. In the case of the presented example,
moving the i++ operation outside of the macro will result in correct operation.

5.6 Single statements versus multiple statements.

In macros that expand to multiple statements and later used in conditional/loop
constructs:
#define foo(x) bar(x); baz(x);

...

if (test(x)) foo(x);

which will expand to:
if (test(x)) bar(x); baz(x);

- the baz(x) call should be inside the conditional block but is not.
The solution:

#define foo(x) { bar(x); baz(x); }

solves the problem:
if (test(x)) foo(x);

which gives:
if (test(x)){ bar(x); baz(x); };

Chapter 6

Optimising

Most likely this part of the book will not provide you with what you want to read,
or care to hear. Let’s be utterly blunt, a majority of so called optimisations of code
are completely pointless, other than to gain you entry into the IOCCC (Obfusicated
Code Competition). Further to the point, programming, especially C programming
is not the place to express creativity or to have a lack of constraints on egotistical
flair.

This part of the book is going to provide examples of optimising going wrong
either in maintaince phase or where speed/space gains are actually attributed to loss
of corner cases or utterly incorrectly logic.

Again, avoid code level optimisations, look rather to algorithm and design op-
timisations.

To be appended to...

6.1 A Matter of Style

Unlike languages such as FORTRAN and Python which impose rules about for-
matting and white space, C can be formatted in a profoundly stupid number of
ways. This flexibility leads to quite a variation in styles, all hotly contested to be
’the best’. Some programmers however take their desires to optimise a little too
far and start attacking the actual source code. There is little reason to cull char-
acters from a source file for the sake of size when the losses to readability and
maintainability are magnitudes worse.

To be appended to... More examples from #c perhaps...

28

Chapter 7

Syntax

When writing C programs, it’s quite common to write something which means
something different to the compiler than what you are expecting. To make matters
worse, the compiler will, unless it perceives what you created as being an error,
will happily compile it.
To be appended to...

29

Chapter 8

Links

Naturally not everything can be covered in one book. This book especially does
not attempt to be a singular reference for all C. Listed below are a series of links
which may prove useful to readers for further information or resources.

• Replacement Libraries

◦ Better String Library, http://bstring.sourceforge.net/

• Debugging and runtime analysis tools

◦ Valgrind, http://valgrind.kde.org/
Enough praise for Valgrind simply cannot be said. If there’s one tool
to make you own a linux box, this is it. Valgrind will help you find
those ever so annoying memory leaks, fixing many intermittent prob-
lems without you explicitly realising you’ve fixed them (okay, so that
can sometimes be a bad thing). What makes this tool so useful is that
it’s incredibly easy to use. You simply prefix your normal command
line invocation of your program with (eg) valgrind -v –tool=memcheck
and behold, you’ll most likely be greeted with many points of code
leaking memory.

◦ ltrace, http://packages.debian.org/unstable/utils/ltrace.html
Tracks runtime library calls in dynamically linked programs ltrace is
a debugging program which runs a specified command until it exits.
While the command is executing, ltrace intercepts and records the dy-
namic library calls which are called by the executed process and the
signals received by that process. It can also intercept and print the sys-
tem calls executed by the program. The program to be traced need not
be recompiled for this, so you can use it on binaries for which you don’t
have the source handy. You should install ltrace if you need a sysadmin
tool for tracking the execution of processes.

◦ strace, http://www.liacs.nl/ wichert/strace/
Strace is a system call trace, i.e. a debugging tool which prints out a

30

CHAPTER 8. LINKS 31

trace of all the system calls made by a another process/program. The
program to be traced need not be recompiled for this, so you can use it
on binaries for which you don’t have source.

System calls and signals are events that happen at the user/kernel in-
terface. A close examination of this boundary is very useful for bug
isolation, sanity checking and attempting to capture race conditions

◦ dtrace, http://www.sun.com/bigadmin/content/dtrace/
DTrace is a comprehensive dynamic tracing framework for the Solaris
Operating Environment. DTrace provides a powerful infrastructure to
permit administrators, developers, and service personnel to concisely
answer arbitrary questions about the behavior of the operating system
and user programs.

Appendix A

Book Development Notes

A.1 CHANGELOG / ERRATA

• Monday, November 29, 2004 - 11H56, Paul L Daniels
Added valgrind (linux), ltrace (linux), strace, dtrace (solaris10) to Links sec-
tion

A.2 AUTHORS

• Paul L Daniels, pldaniels@pldaniels.com
Principle author of C of Peril.

32

